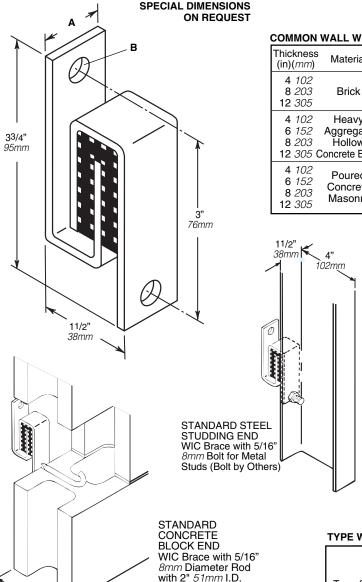


MASON INDUSTRIES, Inc


Manufacturers of Vibration Control Products

350 Rabro Drive Hauppauge, NY 11788 631/348-0282 FAX 631/348-0279 Info@Mason-Ind.com www.Mason-Ind.com

2101 W. Crescent Ave., Suite D Anaheim, CA 92801 714/535-2727 FAX 714/535-5738 Info@MasonAnaheim.com www.MasonAnaheim.com

JOB NAME
CUSTOMER
CUSTOMER P.O.
MASON M.I DWG No

Hooked End for

Masonry Walls (Hook by Others)

COMMON WALL WEIGHTS

nicknes n)(<i>mm</i>)		(lbs/ft²) (<i>kg/m</i> ²)	Thickness (in)(mm)	Material	(lbs/ft²) (<i>kg/m²</i>)
4 102 8 203 2 305	Brick	35 175 75 365 115 560	4 102 2x4 51x102	Steel Studding Alone Wood Studding Alone	1.5 7.5 2.0 10
4 102 6 152 8 203	Heavy Aggregate Hollow	35 175 50 245 58 285	1/2 13 5/8 16 3/4 19	Gypsum Board	2.1 10 2.7 13 3.2 16
4 102	25 Concrete Block 90 22 Poured 48		1 25 1 25	Cement Plaster Gypsum Plaster	10.0 <i>50</i> 5.0 <i>25</i>
6 152 8 203 2 305	Concrete Masonry	72 <i>350</i> 96 <i>470</i> 144 <i>705</i>		Metal Lathe Gypsum Lathing Board	0.5 <i>2.5</i> 2.0 <i>10</i>

MATERIAL:

Standard 40 Durometer 5/16"(8mm) Neoprene Waffle Pad

TYPE WIC DIMENSIONS (in mm)

iameter
 3/8 10 3/8 10

TYPE WIC LOAD RATINGS

		ontal Restraint n if Stressed	Maximum Assigned Wall	Minimum Assigned Weight to
Type & Size	Load (lb)(<i>kg</i>)	Defl (in)(<i>mm</i>)	Weight (lb)(kg)	Establish 15Hz(lb)(<i>kg</i>)
WIC-1	90 41	0.05 1.3	250 113	50 <i>23</i>
WIC-2	260 118	0.05 1.3	500 <i>227</i>	100 <i>45</i>

1. Sway braces prevent buckling or overturning of tall or long walls.

8"

203mm Typical

- 2. Buckling forces are extremely small when braces are reasonably spaced both horizontally and vertically as the brace spacing maintains a very low I/r column ratio.
- 3. Our general recommendation is spacing on four foot centers both horizontally and vertically.
- 4. The maximum axial restraint rating is approximately 33% of the maximum assigned wall weight and extremely conservative.
- 5. Vertical resistance information is provided for checking embedment requirements in walls and shear or pullout forces on both ends of the sway braces. Sway braces are not to be used for vertical supports.

6. Response frequency is a function of the attached mass and the dynamic stiffness in the direction of vibration. The 15 Hz response is normally lower and more desirable than what is usually specified. Heavier weight assignments than the specified minimum will lower the response frequency by the square root of the ratio of the minimum weight to the assigned value multiplied by 15 Hz. Lighter loads will increase the frequency by the same proportion.

EXAMPLE: Steel stud wall with 2 layers of 3/4 inch gypsum board weighing 7.9 lbs. per sq/ft. Sway braces on 4 foot centers both ways.

> Assigned Weight = 16 x 7.9 = 126 lbs. WIC-1 Selection (Maximum 250 lbs) Frequency = $15Hz \times \sqrt{126/250} = 10.65 Hz$

DWN	CHKD	DATE

DWG No.

FORM S-421 7/03